АКТУАЛЬНЫЕ ВОПРОСЫ СОДЕРЖАНИЯ КИМ ЕГЭ-2018 ПО ФИЗИКЕ (22.02.2018)

Исакова Наталья Петровна,

председатель региональной предметной комиссии по физике, старший преподаватель кафедры физики, методов контроля и диагностики Тюменского индустриального университета

МЕТОДИКА РЕЩЕНИЯ, ПРОВЕРКИ И ОЦЕНИВАНИЯ ЗАДАНИЙ С РАЗВЕРНУТЫМ ОТВЕТОМ (РАСЧЕТНАЯ ЗАДАЧА №31 ПО ЭЛЕКТРОДИНАМИКЕ)

ОБОБЩЕННАЯ СХЕМА ОЦЕНИВАНИЯ ЗАДАНИЙ 29-32

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае:);	
II) описаны все вновь вводимые в решении буквенные	
обозначения физических величин (за исключением обозначений	
констант, указанных в варианте КИМ, обозначений величин,	
используемых в условии задачи и стандартных обозначений	
величин, используемых при написании физических законов);	
III) проведены необходимые математические преобразования и	
расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными	
вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения	
искомой величины	

Здесь и далее стандартными считаются обозначения, принятые в кодификаторе элементов содержания и требований к уровню подготовки выпускников общеобразовательных учреждений для проведения единого государственного экзамена по физике

ОБОБЩЕННАЯ СХЕМА ОЦЕНИВАНИЯ ЗАДАНИЙ 29-32

Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	
преобразования. Но имеются один или несколько из следующих	
недостатков.	
	<u></u>

Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют.

2.1

И (ИЛИ)

В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.).

2.2

И (ИЛИ)

В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/ вычислениях пропущены логически важные шаги.

2.3

И (ИЛИ)

Отсутствует пункт IV, или в нём допущена ошибка

2.4

ОБОБЩЕННАЯ СХЕМА ОЦЕНИВАНИЯ ЗАДАНИЙ 29-32

Представлены записи, соответствующие одному из следующих	1
случаев.	
Представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо и достаточно	1.1
для решения данной задачи, без каких-либо преобразований с их	
использованием, направленных на решение задачи.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая	
для решения данной задачи (или утверждение, лежащее в основе	1.2
решения), но присутствуют логически верные преобразования с	
имеющимися формулами, направленные на решение задачи.	
ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения данной	
задачи (или в утверждении, лежащем в основе решения), допущена	1.3
ошибка, но присутствуют логически верные преобразования с	
имеющимися формулами, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	

ЗАДАЧА №31

ПРИМЕР - 1

По горизонтально расположенным шероховатым рельсам с пренебрежимо малым сопротивлением могут скользить два одинаковых стержня массой m=100 г и сопротивлением R=0,1 Ом каждый. Расстояние между рельсами l=10 см, а коэффициент трения между стержнями и рельсами $\mu=0,1$. Рельсы со стержнями находятся в однородном вертикальном магнитном поле с индукцией B=1 Тл (см. рисунок). Под действием горизонтальной силы, действующей на первый стержень вдоль рельс, оба стержня движутся поступательно равномерно с разными скоростями. Какова скорость движения первого стержня относительно второго? Самоиндукцией контура пренебречь.

$$I = \frac{\varepsilon}{2R}$$

$$\varepsilon = \frac{\Delta \Phi}{\Delta t} = \frac{B\Delta S}{\Delta t} = \frac{B\Delta xl}{\Delta t} = Blv_{\text{oth}}$$

$$F_{\rm A} = F_{\rm Tp}$$

$$IBl = \mu mg$$

$$I = \frac{\mu mg}{Bl}$$

$$\frac{\varepsilon}{2R} = \frac{\mu mg}{Bl}$$

$$\varepsilon = \frac{2R\mu mg}{Bl}$$

$$\frac{2R\mu mg}{Bl} = Blv_{\text{отн}}$$

$$v_{\rm OTH} = \frac{2R\mu mg}{(Bl)^2}$$

$$v_{\text{OTH}} = \frac{2\mu mgR}{\left(Bl\right)^2} = \frac{2 \cdot 0.1 \cdot 0.1 \cdot 10 \cdot 0.1}{\left(1 \cdot 0.1\right)^2} = 2 \text{ M/c.}$$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, <u>применение которых необходимо</u> для решения задачи выбранным способом (в данном случае: выражение для	
изменения магнитного потока, закон электромагнитной индукции,	
закон Ома для полной цепи, выражение для силы Ампера, условие	
равномерного движения стержней, формула для силы трения);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	
задачи, и стандартных обозначений величин, используемых при	
написании физических законов);	
III) проведены необходимые математические преобразования и	
расчёты, приводящие к правильному числовому ответу (допускается	
решение «по частям» с промежуточными вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения	
искомой величины	

Dano Semenue: M= 91km 1) Degreonese V1 - insposer R= Q1 Om report esermine v_-crosser 1 1 1 2/ - 2/ - 2/2 | Filting | Filter | Filter | Filter | Filter | Filter | Filter | Filtre M=01 2) Samuel Ezaron Kerson 5 1 B=174 que brances comme. Voin? Man = Fig. + Fa + N + mg, zoe an = 8 - yagnenie & esernes Ep- cue peace co co. peace For unes d'unepos gitte ma & depresent prince que vois voir seu glomosous To goimes one name abiens b corrory & cognins), N-auco led jécure ongen 3) Bbegun wie roop: 4- bysur ou x-ropey i norgabien Гдом рим (си рицион) и растими То зоим Ниотока 6 MARRILLE HO FR OCH ox' Fa - Fy = 0

D fa : Fgr

eg: N-mo = 0

N=mo

y) In a raw glum 2 Fgr - 360 cure grance chaumanus u Top = LeN 5) Fr = BIC. Singor- BIC, yee I- 104, reserve zone crepmonis 6) Samoque glumenue esemmei za reconnece Grano At. I cognuise niceper Vial, In - Vat Successor nousepa mengy mun ybennice no as-l (V, al-V, at) = lot(v, -V)= = l st. V374

7) If janine nicupacionimos imperque super gas non-Type is estemmen i kyunch pelse vengy name nonyum /E/= 90= (85) = 13(5) = 13(6) E - 785 lequen & ronsy pe 8) la parone Ous que yenn ucy roun: 16/E/= I/RIR) = 2IR 8/ T= \(\frac{\xi_1}{2R} \). \(\frac{\xi_2}{2R} \) 3) ly 113,445 4 consegue to = For no your (3) (love I = 15 20" = King Norn = 2 mmp 8 4 11) Sucares Von = 2 01.81.00 21 = 2 0/c

Orber: Voy = 2 ming = 2 m/c

(U Dano: 0,7KL m=1002 K=0,1 au 0,1M l=10m M=0,1 B=7the L-guna comproment Jemenne V72 = ! Max rax oda paisca ghincymix pabronepro, mo ux genoperus pabrin ryiro, a cuin, ra rux generily; patrior combemembirousum cuiam mperus; 7= tayer = == Fryz Fr=mgu Fz=xmgu

F₁-впешеня Шио прикладываемая к г стертого. Три движении готертого площост контура, заключенного петор стертопиши и реньсоми, пристоетих, а так как контур raxingumes & marrimman have, no & consigne organg yelmesi Hlexmoureckui mox. Tax rax zekmpureckui niox njioxogum reprez 2 comeponeris, no ra 2 comepamens co comoponir siarnimenos nas glumbyem una Amanega -F2

Fachunely cury Amnejrol:

an. na gonainumentran blance ombemob N2

$$I = \frac{V}{R}$$

$$I = \frac{\epsilon_i}{2R}$$

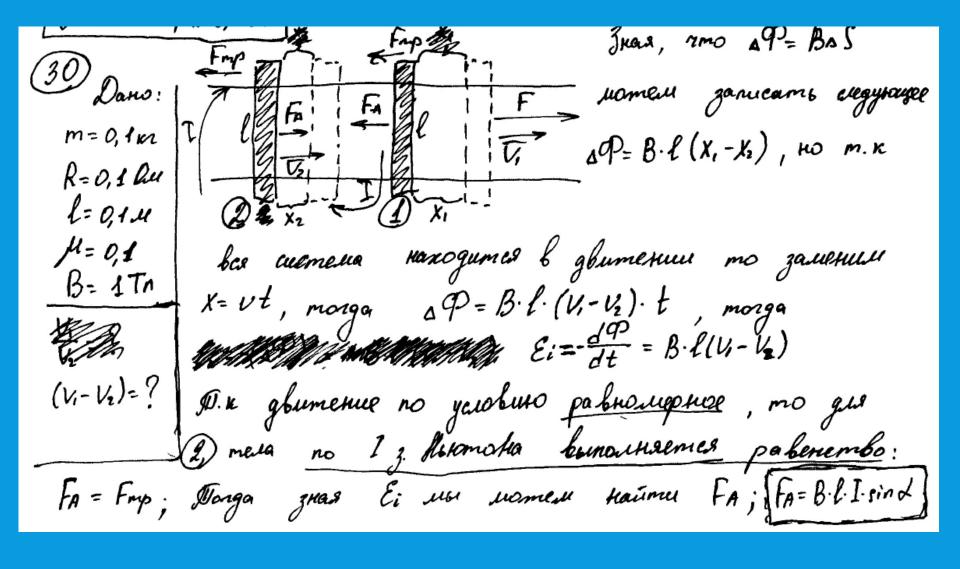
$$\varepsilon_i = \left| \frac{\Delta \Psi}{\Delta t} \right|$$

$$\Delta P$$
-recyfermen. Norgaziur regez ongegerence mainimnoso no moxa; $P = \beta \cdot s \cdot \cos \lambda$

Codepen be nayrubuneco logramerun Bogro:

$$F_2 = BLI = \frac{BLEI}{2R} = \frac{BL}{2R} \cdot \left| \frac{\Delta \Psi}{\Delta t} \right| = \frac{BL}{2R} \cdot \left| \frac{B\Delta S}{\Delta t} \right| = \frac{BL}{2R} \cdot \left| \frac{BL}{\Delta t} \cdot \left| \frac{$$

THAK KOIK BLV2 >0, and poeun mogyus


Propazie V12 uz naigrennoro borgamenua u pacnumen +2

$$V_{72} = \frac{2F_2R}{B^2L^2} \ge \frac{2mg_MR}{B^2L^2}$$

$$V_{72} = \frac{2mguR}{R^2/2}$$

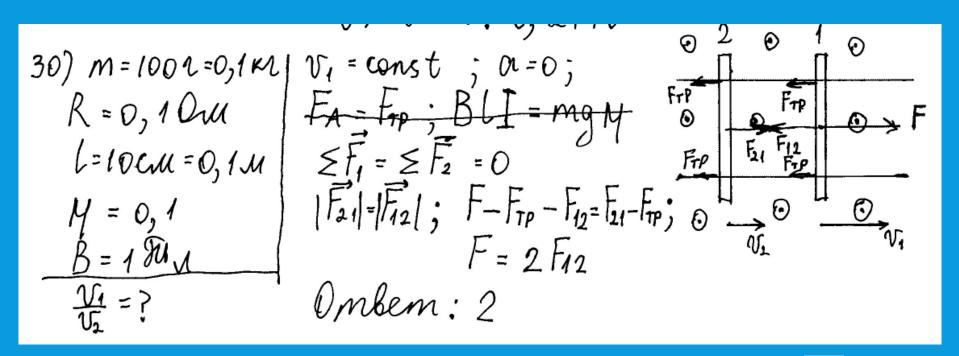
Togemabilie coomblimemby voujue marenes in traugen V12.

$$V_{72} = \frac{2 \cdot 0.7 \, \text{m} \cdot 70 \, \frac{\text{m}}{c^2} \cdot 0.7 \cdot 0.7}{7^2 \cdot 1^2} = \frac{0.02}{L^2} \, \frac{\text{m}}{C}$$

$$I = \frac{\mathcal{E}_i}{R} \Rightarrow \frac{Bl(v_i - v_2)}{R}, \text{ morga} \quad F_A = B\cdot l \cdot \frac{B\cdot l(v_i - v_2)}{R} = \frac{B^2 \cdot l^2 \cdot (v_i - v_2)}{R}$$

 $\frac{B^2 \cdot l^2 \cdot (V_i - V_i)}{R} = \mu mg$, откуда истем Найти ΔV ;

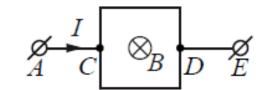
AV = umg. R 3 Rogemahun ruerenne znavenus;

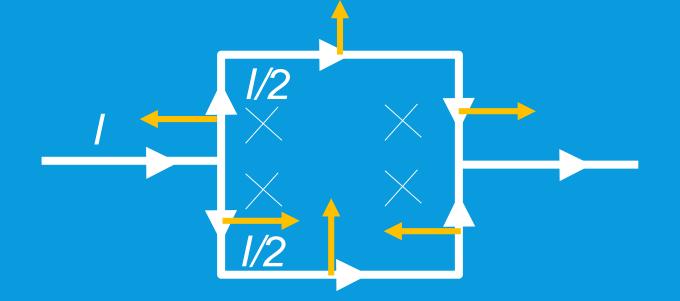

AV = 0,1.0,101 Pais 0,1 am = 1.4/c

Ombem: replace mero glumemes amnocumentano brograno co скоростью oV= 1.4/c

индукционний топ (I_i) , собственное F_i , F_i embyvanjut uzuenemus op repez nonnyn, och azokannut par caun in companion. $E_i = -\frac{\Delta \Psi}{\Delta +}$ $\varphi = 13.5.00$ so B, cosd - const; S= (v, - vz). st. e, rge v, u vz chopochu 1 u 2 emermuen $E_i = (v_1 - v_2) \cdot B \cdot C \cdot cos d$ I 3. H. gen comeponent na On Sygen boulagemb: ma, = F + F TP, + F4, W. K. comeponent glumymor palmonepus 2 mar = Far + For, u noconguamento, a, u ar patieno. Torga s F = FA, + For, Fin = mgy. &; = IBC; I= C; [FAz = For; W.r. reacont a conformableure ogurardu, Fop, = Fop, a |F4, | = |F42| F = 2 For = 2 mgy $\Sigma_{i} = (v_{1} - v_{2}) \cdot b \cdot l \cdot cosd = \Sigma_{i} R = v_{1} - v_{2} = \frac{\Sigma_{i} R}{B \cdot l \cdot cosd}$ $\overline{\Sigma}_{i} = \frac{f - ymg}{B \cdot l} = v_{1} - v_{2} = \frac{R \cdot ymg}{B^{2} \cdot l^{2}}$ $v_{1} - v_{2} = \frac{\theta_{i} \cdot \theta_{i} \cdot \theta_{i} \cdot \theta_{i}}{l^{2} \cdot \theta_{i}^{2}} \qquad v_{1} - v_{2} = 1 \quad (m/c)$ 1.3

upu leozgenerbun na reno cunon F Е вней возникнет индукционенти 10 = 0,1M Pacuuluy curos gerios bylongue Her teno cornacreo nefleury Bax. HOLDTONES Ju 20,1 B = 175 1) Ecru F < Fip, 10 reuzero ne upouzouger, 2) Een F7 F76, TO T/F= F0, + F76 ω-? FA, = Bld, , rge d, = E, = BO, L E: = = = T ; (Eornaereo zanorey frapages) 18:,/= Bs, L Ananoruereo FAZ 2 Boy 4 = (B1) 52 F = (BB) o, + Ftb, rge Ftbe NM, a N = mg F = \(\frac{(BC)^2}{R}\tau, + \maggraphi, \text{ orkya4 } \tau, = \frac{2}{(BC)^2} \left(F - \maggraphi) (Bl) Sz = mg m, ornyga Sz = R mg m W=-/T. K O Peu gleer tyras & pazreone reaufalenereus 5,75, $\omega = \frac{2}{(Bc)^2}$


Hairn: Wasco: m=0,1m R=0,10M V2-V1=? l= 0,0/m FAC + FAI + Fop = Ma Ox1-umg + IxBl-IBl=0 IzBl-IBl=umg Vible - ViBili = umg Bil (V2-V1)=MMg=>VI-VI = MMgR= 01/01/10.01) ->V2-V1= 0,01 = 0,01 = 100 m/c


ЗАДАЧА №31

ПРИМЕР - 2

Квадратная рамка со стороной L=10 см подключена к источнику постоянного тока серединами своих сторон так, как показано на рисунке. На участке AC

течёт ток I=2 А. Сопротивление всех сторон рамки одинаково. Найдите полную силу Ампера, которая будет действовать на рамку в однородном магнитном поле, вектор индукции которого направлен перпендикулярно плоскости рамки и по модулю B=0,2 Тл. Сделайте рисунок, на котором укажите силы, действующие на рамку.

$$F_A = I_1 BL = \frac{I}{2} BL$$
 $F=2F_A$
 $F = 2\frac{I}{2} BL = IBL$
 $F = 2 \cdot 0.1 \cdot 0.2 = 0.04 \text{ H}$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
 записаны положения теории и физические законы, 	
закономерности, <u>применение которых необходимо</u> для решения	
задачи выбранным способом (в данном случае: формула для силы	
Ампера, правило левой руки, принцип суперпозиции сил);	
II) сделан правильный рисунок, на котором указаны силы,	
действующие на рамку;	
III) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	
задачи, и стандартных обозначений величин, используемых при	
написании физических законов);	
IV) проведены необходимые математические преобразования и	
расчёты, приводящие к правильному числовому ответу (допускается	
решение «по частям» с промежуточными вычислениями);	
V) представлен правильный ответ с указанием единиц измерения	
искомой величины	

Dane: Traines aura dunga L= ro cu. I = 2A TICK. FAT nangrahuno njeomebonacomno Fiz BS 0,8TA. a I, ogunamobas; FA - 9 FAY montomasomo FAB, a Iz ogenanobas mo. FA = FA 9 + FA ; M.K. FA 2 Hampaber Hannabienna bing me Conveyory amo FA5 mo; FA5 FA2+FA5. The gropuyae Curos Aunqua FAS BILSING; FAS BI, L + BI, L = BL(I,+I2) MI.k. njuligravson nagrarlevoror Colgunicane nagracustro, mo I=1,+I2; FA = IBL = 92 Tu. 2 A. 9,14 = 9,04 H. Omben: 0,04 H.

FAM DEWLETINE:

FAM DE FAM DE MONGO DE CONFORMABILIEME

C PAM DE MONGO DE CONFORMABILIEME

C PAM DE MONGO DE CONFORMABILIEME

MONGO PAM NON NO MAN NO Daro: 4=0,1m; T=2A; B=0,2 TA Slaumu: u no bepsereny, u no Humereuy essegy. Il k. mologe coeguneral hepameners, no nomen zanucamo: IR=I1R+I2R; I=I1+I2, no I1=I2 (oguranolone Molognuscu chepsey " chuzy), $I_1 = \frac{7}{2} = \frac{2}{2} = 1 A$; He rpologemen c morau, rasegueguera le varrumpan houe, generalien cura Aunera, romanare palera: FA=IBI, rge I- gunta gracenta npologruma. The making rebot pyron orpegenne hampabreance contr Annepa, genombyrousen na raznose gracemen sepuz

il amuemum use trappalmente na purytike. tour luis , genembersonne ra gracemen AC n CE palette no magnito u premulancionement no happalmenuo, (m.k. () e-cepegana AE) aregoldments palmogenembyrougane un Ambepa Ha gracmon AE palar myuto. Anausuurus que gracma BH, pabrogeticonlayoregare and pakka kyuto (puc.) Jácousmpum gracmen AB u EF: coma surepa b glyse cyraise ramabuextra bleps mocketme pucytira, cuegobamentos aus Aunera, generaly rousau No beck knowyp, pobla: H= HAB+ FEF; H = IAB·B·4+IEF. B.4; Thora, van Jous crazans parel, palero, cuegodomento F= IAB·B·4·2- $\overline{H} = 2.0, 2.0, 1 = 0,04$ A. = = -B.B.4; Omben: 0,04(A)

N 30 FA= IBC·smd Dano: L=0,1M FK BJ, No smd = 4 £* -; no fabury rebox pym: Due 1.2: FA 1 15:F1 = uz bereginas езминам: 6-4: FD = FA +5-FA 240 T.k. emplone pauxe unesson 6-4:50 = 1 palenne confrontibremae, D aura poro 6 morre C generae renaise 4]12=]3-4 = 1 A FA = FAI-2 +FA 3-4. TIK. TOKY TEKYM pobuse, Cioponis ogurandes, a B = const., To FA72 = FA 3-4. Torga FA aus = & FA 1-2 = 2. IBC = 2.14.0,271.0,14 = = 0,04 H.

Ombem: FA = 0,044.


Dano:

$$L=0.1 \text{ M}$$
 $I=2 \text{ A}$
 $B=0.2 \text{ TA}$
 $F_A=?$

Dosee Mozsegium pucyhox:

 F_3
 F_4
 F_5
 F_5
 F_6
 F_7
 F_8
 F_8

Here
$$f_1$$
 f_2 f_3 f_4 f_5 f_4 f_5 f_5 f_6 f_6

Populya gue custo Annepa:
$$F=IBL$$
 F_3 $f
if F_4$; F_5 $f
if F_6$
 $|F_3|=I_0B\cdot \frac{L}{2}$
 $|F_4|=I_0B\cdot \frac{L}{2}$
 $|F_6|=I_0B\cdot \frac{L}{2}$

=>
$$\vec{F_3} + \vec{F_4} = \vec{0}$$
; $\vec{F_5} + \vec{F_6} = \vec{0}$. C yremon smore populyar (0): $\vec{F_A} = \vec{F_1} + \vec{F_2}$ => $\vec{F_A} = \vec{F_1} + \vec{F_2}$ => $\vec{F_A} = \vec{F_1} + \vec{F_2} = \vec{I_0} + \vec$

Daus:

$$L = 10 \text{ cm} = 0, 1 \text{ M}$$

 $I = 90^{\circ}$
 $I = 20^{\circ}$
 $R = 0,27$
 $R = R_2 = R_3 = R_4 = R$
 $I = R_4 = R_5$

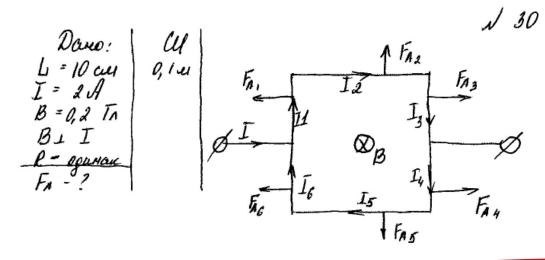
1) T.K. NKILH=> I, + I2 = I, U,= U= U. по з. Она для угастка чепи:

$$T=\frac{U}{R}$$
 => $T_1=\frac{U}{R}$; $T_2=\frac{U_2}{R}$

Mo IIg. H:
$$\vec{F_A}' + \vec{F_A}' + \vec{F_A}' + \vec{F_A} + \vec{F_A} = m\vec{\alpha}$$
.

Mo omouse $\vec{F_{A}} = \vec{F_{A}} + \vec{F_{A}} = \vec{F_{A}$

FA =?


M. Confrontbuttle curport

ogunaus to
$$=$$

mon b ogun $curpone = 2$
 $f_A = BIL (sind=1)$, $l = \frac{4L}{2}$
 $f_A = BI + L$
 $= BIL = 0,2 \cdot 3 \cdot 0,1 = 0,04$

H

Ombem: 0,08 H Partie pagamena nononom => FAN = 2FA = 2.0,04 = 0,08 H

Pemerue

T.N. yracrku 1.3 u 4.6 coegunena napaweeean u R - bespe equianabe, mo $I_{13} = I_{46} = \frac{1}{2}I$

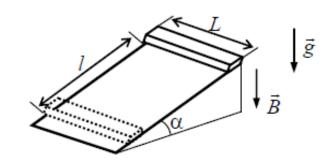
Участки 1, 2, 3, 4, 5, 6 соединени посиедовательно $I_1 = I_2 = I_3 = I_4 = I_5 = I_6$

Imben: 0,08 H

1.3

Daud: Mutmu: Jewelle: $\overline{\underline{J}}_{Fa}$ Chompand object. L = 10 CU I = 2A B = 0, 2 Tr1. To making by about maintenance ways afterward of the mount of making making making no making.

1 D realing reboti repute (4 ration no mong, seminar vingence of bacquing belonged to former name and burges) housestalem harryon harrows.


Peuvenue: Dano: =0.1 m L= 10 cm Fa = IBlsind I = 2A B = 0,2 The M.r. d=90°, mo sin 90° = 1, morga FA - 7 FA - IBL M.K. francisa sbaghamnas, mo FA = 4IBL $F_A = 4 \cdot 2 \cdot 0, 2 \cdot 0, 1 = 0, 16 (4)$

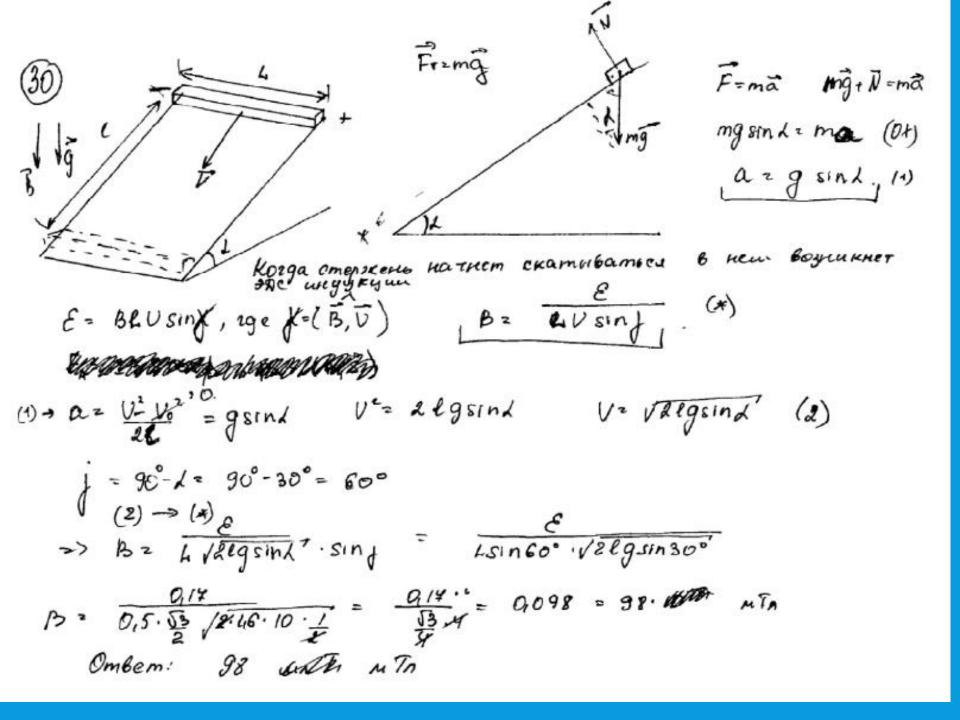
Ombem: 0, 16 H

ЗАДАЧА №31

ПРИМЕР - 3

Тонкий алюминиевый брусок прямоугольного сечения, имеющий длину $L=0.5\,$ м, соскальзывает из состояния покоя по гладкой наклонной плоскости из диэлектрика в вертикальном однородном магнитном поле индукцией B (см. рисунок). Плоскость

наклонена к горизонту под углом $\alpha=30^\circ$. Продольная ось бруска при движении сохраняет горизонтальное направление. В момент, когда брусок пройдёт по наклонной плоскости расстояние l=1,6 м, величина ЭДС индукции на концах бруска $\mathcal{E}=0,17$ В. Найдите величину индукции магнитного поля B.


$$|\mathcal{E}| = \upsilon BL \sin(90^{\circ} - \alpha) = \upsilon BL \cos \alpha$$
,

$$\frac{m\upsilon^2}{2} = mgh = mgl \cdot \sin\alpha,$$

$$\upsilon = \sqrt{2gh} = \sqrt{2gl\sin\alpha}.$$

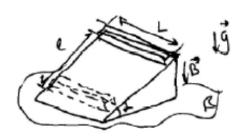
$$B = \frac{\mathcal{E}}{L\cos\alpha\sqrt{2gl\sin\alpha}} = \frac{0,17}{0,5\cdot0,866\cdot\sqrt{2\cdot10\cdot1,6\cdot0,5}} \approx 0,1 \text{ Тл.}$$

Критерии оценивания выполнения задания	Баллы
• •	
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, <u>применение которых необходимо</u> для решения	
задачи выбранным способом (в данном случае: формула для ЭДС	_
индукции в проводнике, движущемся в магнитном поле; закон	_
сохранения механической энергии);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	
задачи, и стандартных обозначений величин, используемых при	
написании физических законов);	
III) проведены необходимые математические преобразования и	
расчёты, приводящие к правильному числовому ответу (допускается	
решение «по частям» с промежуточными вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения	
искомой величины	

Dano
$$E = 0,12B$$
 $E = 0,5xH$
 $E = 0,5xH$

$$D = \frac{Ei}{L[2lq']} \frac{1}{2inL}$$

$$B = \frac{0,12}{0,5} \frac{0,12}{\sqrt{2\cdot 40\cdot 1,6' \cdot 0,5}} = 0,12 (TA)$$


Ombon: 0, 12 Tr

230

Dano. L=0,5m h=30° l=1,6m &=0,17B B-?

Pemerne = = E: = E

изменение магнитного потока равно ДС инсукции

Tak the azurenemue har notoka. Pabuo marn nono ne ajururune nnomege. $\Delta P = B_{\Delta}S$ zuarut $B_{\Delta}S = E$

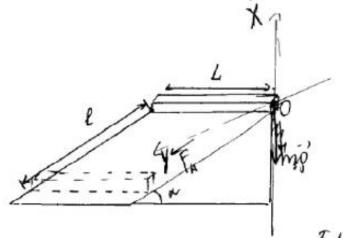
В не перпендикулярем поверхиости наклонной плоскости спроецируем эту плошавь поверхиость на плоскость В LВ.

1 AS = S Cost = Ll Cost

Bas=& B= &= E = 0,17.2 = 0,245 Tr = 245 mTr Omlem: B= 245 mTr = LECOST CUL MQ DOPOTE -> Dano

L = 0,5 m

d = 30°


1=1,6M

E = 0,178

B - ?

Pencenne

Ha ghumyuncica npologonich e mohani generalyet

1) Belgère koopusea maryo oco OXY

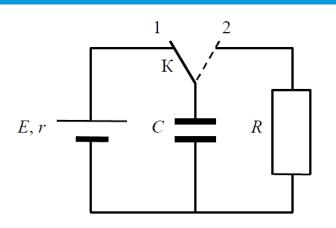
OX -mg #- FA SIUX=mga OY FA cosa = ma

 $-m_0 - F_{ASILIA} = F_{A} \cos \alpha$ $F_{A} = \sin \alpha \cdot \cos \alpha$

Г. h (проворить) брусов точкий и отношнивой по условию, то его воссока премере-

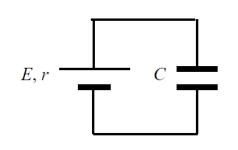
г) Сина Антера совершино работу по перешенуемию оруско на расстояние с : 4 = Fo l

B hobogniche borpeniencet shepren
$$W = IU$$
, kienropenie yzogene ne paro my no neperienceno $W = IU$, kienropenie yzogene ne paro ne parenne cieno necko parno $I = \frac{\mathcal{E}}{R} = \mathcal{E} = U$

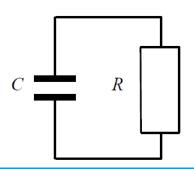

$$I\mathcal{E} = F_R \quad \mathcal{L} = \underbrace{L \, p_{an} \, \mathcal{L}}_{100A + cosa} = I = \underbrace{L \, p_{an} \, \mathcal{L}}_{100A + cosa} \cdot \mathcal{E}$$

Ombeur 14.7 Tr

ЗАДАЧА №31


ПРИМЕР - 4

В схеме, показанной на рисунке, ключ К долгое время находился в положении 1. В момент $t_0=0$ ключ перевели в положение 2. К моменту t>0 на резисторе R выделилось количество теплоты Q=25 мкДж. Сила тока в цепи в этот момент равна I=0,1 мА. Чему равно сопротивление резистора R? ЭДС батареи E=15 В, её внутреннее сопротивление r=30 Ом, ёмкость


конденсатора C = 0,4 мкФ. Потерями на электромагнитное излучение пренебречь.

1. К моменту $t_0 = 0$ конденсатор полностью заряжен, ток в левой части схемы (см. рисунок) равен нулю, поэтому напряжение между обкладками конденсатора равно ЭДС E, энергия конденсатора $W_0 = \frac{CE^2}{2}$.

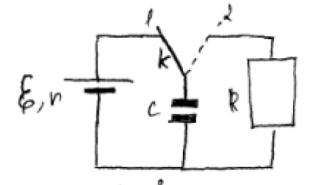
2. В момент t > 0 напряжение на конденсаторе U равно напряжению IR на резисторе в правой части схемы (см. рисунок). Энергия конденсатора в этот момент

$$W = \frac{CU^2}{2} = \frac{C(IR)^2}{2}.$$

$$Q = W_0 - W$$
 $Q = \frac{CE^2}{2} - \frac{C(IR)^2}{2}$

$$R = \frac{1}{I} \sqrt{E^2 - \frac{2Q}{C}} = 100 \text{ кОм.}$$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы, закономерности,	
применение которых необходимо для решения задачи выбранным способом (в	
данном случае: закон Ома для участка цепи, формула для энергии	
конденсатора, закон сохранения энергии);	_
II) описаны все вновь вводимые в решении буквенные обозначения физических	
, , , , , , , , , , , , , , , , , , ,	
величин (за исключением обозначений констант, указанных в варианте КИМ,	
обозначений величин, используемых в условии задачи, и стандартных	
обозначений величин, используемых при написании физических законов);	
III) проведены необходимые математические преобразования и расчёты,	
приводящие к правильному числовому ответу (допускается решение «по	
частям» с промежуточными вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения искомой	
величины	


31

purporcering ma persuitap ranner Ton por sonigeneing Q= 25 Mr. = CE - 3 aponespreis congenios War - C212 - merunt & mount spannet to I=quat по закону сопромения этерии. E=15B 142 = 94. 70° - 25 - 200 We = Q+ WK2. C=04 MR 9 $u = \frac{10}{20}$ no gasioney aua $I = \frac{u}{R}$ $R = \frac{2l}{I} = \frac{10}{2.7.63} = 10$ 2 = 9+ 522 R = Pen $u^2 = \frac{2 \cdot \left(\frac{C \varepsilon^2 - \alpha}{2} \right)}{c}$ OTTO: 10 Our.

31 Dano: Et l'emence: 1/ Konga racor 6 25.10 dm paromercen 1 Tox reper housenears Q = 25 em Dru C'he npokogut, na neu nauskant I=0,14A 0,1.10 Japag κανίσει εω $W_{k} = \frac{CU}{2}$, vge $V = Ee; W_{k} = \frac{CE}{2} = \frac{90.10^{5}.225}{225} = 4,5.10 Ω$ Ce = 15B 1 = 30 Bu 9,4 10 p 2) Nous hepelepenne vanora 6 L= Q. Year P ndeonience Z, meprie na nongencorope noiget na pequerop R, rocts susprum вприте на когревание. Пайдем ту, что останось W= WK - Q = 4,5.10 - 25.10 = 2.10 Du. 3) Haugue suepruso na pezucrope, cuio meca nacira ero composibulence. $W = \frac{CV^2}{2}$, ige $V = \sqrt{\frac{2W}{c}}$ is no zanony lua que gractus genu I= , ree R= V V= \ \frac{2.105}{0,4.106} = \sqrt{100 = 10B}, raga R = \frac{10B}{0,1.100} = 1.105 Pur. Moet: Reguesque = 10° Du.

Biganne 31:

$$V_{s} = \frac{C \xi^{2}}{2} = \frac{Q_{1} 4 \cdot 10^{6} \cdot 22^{5}}{2} = 45 \cdot 10^{6} \Omega_{x}$$

$$W_{0} = \frac{CU}{2} + Q = >$$

$$45 \cdot 10^{2} = \frac{0.4 \cdot 10^{2} \cdot 10^{4}}{2} + 25 \cdot 10^{6} D * =$$

$$= \frac{50.4 \cdot 10^{6} u^{2}}{2} = > u^{2} = \frac{30 \cdot 10^{6}}{50.4 \cdot 10^{6}} \approx 1$$

OTLET: R=13000 On.

R-? Q=25-15 bm Y= 41.15 A E= 188 Z= 30 Qu C= 24 mu F=

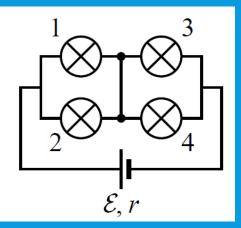
=4.64

1) \overline{Y} . \underline{y} moments repense.

The series of nonomens $\underline{\xi}$, \underline{z} $\underline{\xi}$, \underline{z} $\underline{\xi}$, \underline{z} $\underline{\xi}$, \underline{z} \underline{z}

2) Porce referencement enough paromine. 2, non houser as new, a section tondercaropa buttenesses to pequesope I have Tenes.

3) I nonsumenum pasoro L, $y = \frac{2}{R + 0}$; $y = \frac{2}{\pi}$, $y = \frac{2}{\pi}$, y =

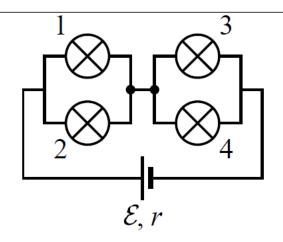

P = \(\frac{c\sigma^2 \chi^2}{c\sigma^2} \) R = \(\frac{0.4.0^4}{0.4.0^5} \chi \frac{2.25}{0.4.0^5} \chi \frac{150}{0.4} \)

Dulen: Ross Our.

ЗАДАЧА №31

ПРИМЕР - 5

Какая тепловая мощность выделяется на лампе 4 в цепи, собранной по схеме, изображённой на рисунке? Сопротивление ламп 1 и 2 $R_1 = 20$ Ом, ламп 3 и 4 $R_2 = 10$ Ом. Внутреннее сопротивление источника r = 5 Ом, его ЭДС E = 100 В.


Возможное решение

1. Сопротивление внешней цепи

$$R_0 = \frac{R_1}{2} + \frac{R_2}{2} = \frac{R_1 + R_2}{2}$$
.

2. По закону Ома для полной цепи ток, текущий через источник в цепи,

$$I = \frac{E}{R_0 + r} = \frac{2E}{R_1 + R_2 + 2r}$$
.

3. Сила тока, текущего через лампу 4, равна половине силы тока, текущего через источник. По закону Джоуля — Ленца мощность, выделяющаяся на лампе 4,

$$P = \left(\frac{I}{2}\right)^2 R_2 = \frac{E^2 R_2}{\left(R_1 + R_2 + 2r\right)^2} = \frac{10\,000 \cdot 10}{1600} = 62,5 \text{ Bt.}$$

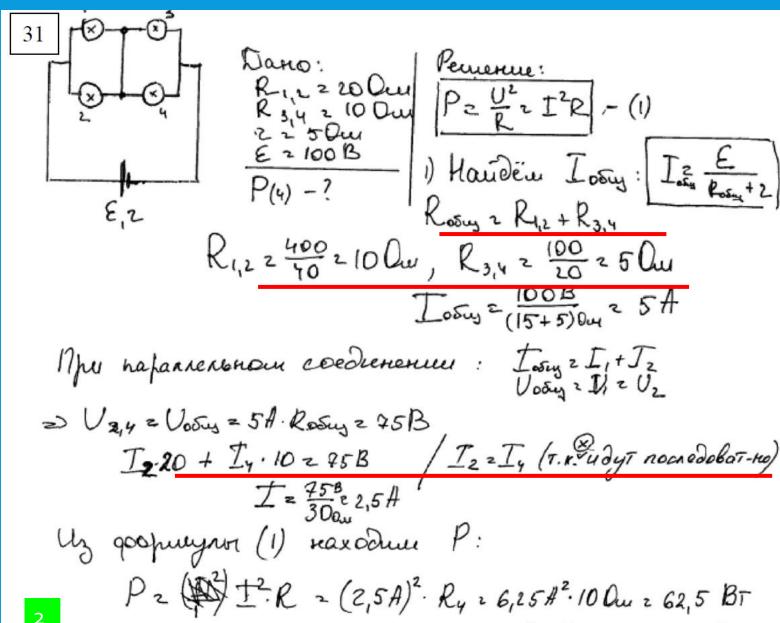
Ответ: P = 62,5 Вт

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: закон Джоуля –	
Ленца, закон Ома для полной цепи; правильно рассчитано	-
сопротивление схемы);	
II) описаны все вновь вводимые в решении буквенные	
обозначения физических величин (за исключением обозначений	
констант, указанных в варианте КИМ, и обозначений величин,	
используемых в условии задачи);	
III) проведены необходимые математические преобразования и	
расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными	
вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения	
искомой величины	

31 R. = 10.0m Ru = 00, = 10.0m E = 1000. 2 = 5.0m Pu - 2

E, 2 Urmornue mona scapournep. 2(3.3.C.) u buyung compom r.

J-4. Our que romai yens. $1 = \frac{\varepsilon}{Rosy + 7}$ Lauron 1 + 2, 3 + 4 wee, rapar. $R_{1,2} = \frac{R_1 \cdot R_2}{\varepsilon_1 + \varepsilon_2}$


Rest were man raw ux coupon. palme mo R_{12} : $\frac{R}{2}$: 10. Du jamenourm c R_{14} : $\frac{R_{1}}{2}$: 5. Ou Therepe sauno (1n2) a sauno (3n4) weg. now. use Rody: = $R_{3,4}$: $\frac{R_{1}}{2}$: 5. Ou Therepe sauno (1n2) a sauno (3n4) weg. now. use Rody: = $R_{3,4}$: $R_{1,4}$: 15 Ou. - R_{1} been year. $T = \frac{100R}{17.0u+50u}$: T A.

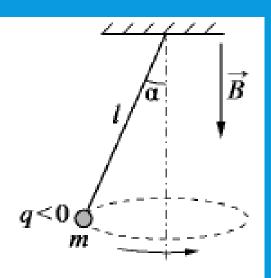
 $P(uouynound) = JU = J^2 R$. Maynown - berns, novay, nanyo pout cobeput new eg. eg.

auleur. 62,5 B

crutation paporbox yenn, T.K. Dareo! R1=20 OM R2=10 DM DJAB = 0 Torga: 2=5 DM &=100B Interbane restrail exercia. ! 1) Conposibrencie na gracikax 13 4 24 Syget pobres: R24 = R13 = 20 + 10 = 30 (OM), T.K. namon fla эту участках соеринено посперовательно. гучасти 13 и 24 соеринения паралленьно, зн. Robuyee = $\frac{1}{R_{13}} + \frac{1}{R_{24}} = \frac{2}{R_{13}} = \frac{2}{30} = \frac{1}{15}$ (on 1) Robinse = 15 (One). Robinse - compo bremner conhoribre nue & yenn.

Uz zariorea bria pre nontioù yenu: J= = 100 = 5 (A), Tolga Horance = J. Roby = 5.15= 75 (B) yracrum 13 4 24 norpannerston, znazu to J13 = J24 = J => J24 = = = 2,5(A) Jo zenony Druoyne - Nenya: P= J2R, 3H. Pay = 6,05 30 187,5 J24. Rzy Ry = 10 Cm = 1 3 , 30. Ha Ry tage Syger 1/3 P24 => Py = 1 J24. R24 (J-const Py = nocnepo basers now cocpunerus) T. K. J- const pre noerepobaseremoro coepunemos, zn. Py = 2,52. 10 = 62,5 (BT) Debet: Py = 62,5 BT

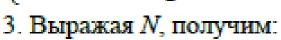
Ombem: 62,5 BT


K1 = K2 = 20 Que R33R4 = 10. Que 55. au E=100B P = 4.08 10 au = 40. BT Inchem: 40 B1

8.к. Сощиние парамыльны, то напряжини - послоянны, и КР Ri= Ris Ri=20 Cly 14= Rig Re= 10 Duy. £=100B Morris uchus rums TEAMORAN MOUS-? Rodus = 30.30 = 15

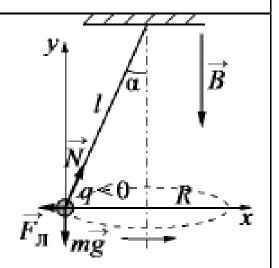
ЗАДАЧА №31

ПРИМЕР - 6


В однородном магнитном поле с индукцией B, направленной вертикально вниз, равномерно вращается по окружности в горизонтальной плоскости против часовой стрелки отрицательно заряженный шарик массой m, подвешенный на нити длиной l (конический маятник). Угол отклонения нити от вертикали равен α , скорость вращения шарика равна υ . Найдите заряд шарика q. Сделайте рисунок с указанием сил, действующих на шарик.

Возможное решение

- На шарик действуют три силы: сила тяжести, сила натяжения нити и сила Лоренца (см. рисунок).
- Запишем второй закон Ньютона в проекциях на оси координат инерциальной системы отсчёта, связанной с Землёй:


$$\begin{cases} N\sin\alpha - q\upsilon B = \frac{m\upsilon^2}{R} \\ N\cos\alpha - mg = 0 \end{cases}$$

$$mg \cdot tg \alpha = \frac{mv^2}{R} + qvB.$$

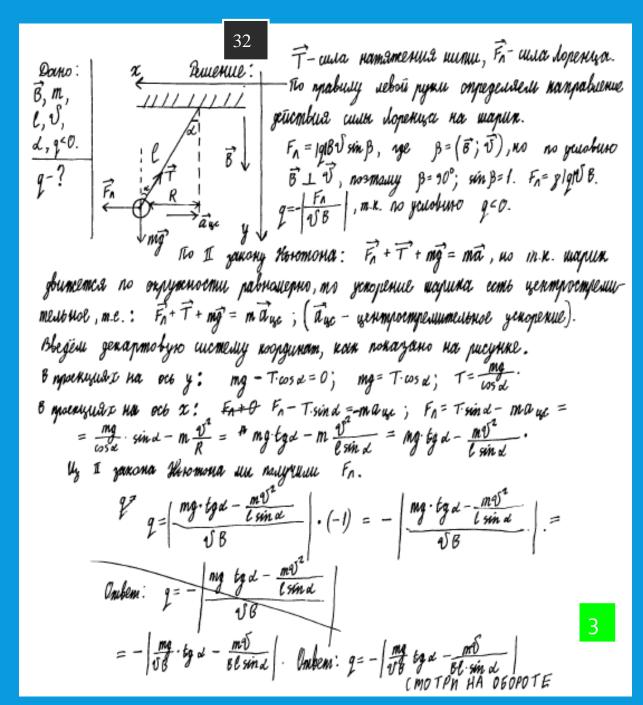
4. Так как $R = l \sin \alpha$, получим ответ:

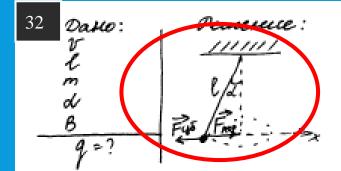
$$q = \frac{m}{B} \left(\frac{g}{\upsilon} \operatorname{tg} \alpha - \frac{\upsilon}{l \sin \alpha} \right)$$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: <i>второй закон</i>	_
Ньютона, формулы для силы Лоренца и центростремительного	
ускорения);	
 П) сделан правильный рисунок с указанием сил, действующих на 	
шарик;	
III) описаны все вводимые в решение буквенные обозначения	
физических величин (за исключением, возможно, обозначений	
констант, указанных в варианте КИМ и обозначений,	
используемых в условии задачи);	
IV) проведены необходимые математические преобразования,	
приводящие к правильному ответу;	
V) представлен правильный ответ	

The bringing specially blinderses:

may = Fx > 12 = 956; les maleurs rellerons ryregealeures: E=65 in 2


> 12 = 96; 15 = 96 > 9= 100


= 100 = 96; 15 in 2 = 96 > 9= 100

= 100 = 96; 15 in 2 = 96 > 9= 100 in 2

Omben: mot Blsing

32 вторый замы Ньютьна 44 may = Tsind - FA => my=Tcock=s v, d, l, m nan ugleesum Hacigun r= 2. sind. Zisind = mg +gd 90 B= Onbem: ゆう

1) Tephui 3-4 Kommon ma=F; may=FAT+ng, ege ay= F, F=qVB, T-aura manuskerung; r = Sinhil 2) Thoerym ra ocu; Dx: may MSint. C = gUB+TSint Oy: TGS L = ng, onegga T= Tash 3/ Решин полученную сиспешу метазан фородстановки (Т= 100) , gnykyga 9 natigen: 9= (ml) - mgtgl

СПАСИБО ЗА ВНИМАНИЕ

Исакова Наталья Петровна,

e-mail: vasvas25@mail.ru